
Human Motion Generation From Text

Xinran Li
ShanghaiTech University

lixr@shanghaitech.edu.cn

Yuyao Chen
ShanghaiTech University

chenyy6@shanghaitech.edu.cn

Abstract

Expressive and natural human motion generation is a rewarding area of computer1

vision, which is because the generation is really a challenging task on account of2

the complex diversity of human motion, human perception of given text, and the3

difficulty of accurately describing human motion. However, we have many current4

methods to generate human motion such as CLIP, diffusion model, they have some5

limitations on generation based on more specific description, and are maybe not6

consistent for out-of-domain reference examples. We introduce a new generation7

model combining CLIP and DDPM training methods to train a more accurate and8

diverse model from multiple text input. Our goal is to generate a dynamic 3D9

motion that shows a continuous movement in a short period of time based on the10

user’s text input, and to generate a random diversity of motions based on the same11

text input, showing randomness and diversity to meet different user needs. We12

evaluate our model on a dataset of human motion descriptions and compare it with13

a baseline approach. Our decoder conditional on the motion representation can14

also produce variants of the motion while preserving its semantics and style, while15

changing non-essential details that are not present in the motion representation. In16

addition, CLIP’s joint embedding space supports language-guided motion manip-17

ulation in a zero-sample fashion. We used a diffusion model for the decoder and18

experimented with an autoregressive model and a diffusion model for the a priori19

model, finding that the latter was computationally more efficient and produced20

higher quality samples. As we demonstrate, our new generation model is a generic21

approach, enabling different modes of conditioning, and different generation tasks.22

We show that our model is trained with lightweight resources and yet achieves23

state-of-the-art results on leading benchmarks for text-to-motion.24

1 Introduction25

Motion generation from text is a recently emerging field of research. It involves the task of generating26

a sequence of frames representing a human motion from a text description. This can be used for27

applications such as virtual reality, animation, and video games. The task is challenging as it requires28

understanding of natural language, as well as the ability to generate realistic motion.29

Recent progress in computer vision has been driven by scaling models on large datasets of captioned30

images collected from the internet. Within this framework, CLIP[26] has emerged as a successful31

image representation learner. CLIP embedding has many desirable properties: they are robust to32

image distribution shifts, have impressive zero-sample capabilities, and are fine-tuned to achieve33

state-of-the-art results on a variety of visual and linguistic tasks. Meanwhile, diffusion models have34

emerged as a promising framework for generative modelling, driving the latest developments in35

image and video generation tasks. To obtain optimal results, diffusion models utilise a bootstrapping36

technique that improves sample fidelity (for image, photo-level realism) at the expense of sample37

diversity. In this work, we combine these two approaches to solve the problem of text conditional38

motion generation. We first train a diffusion decoder to invert the CLIP encoder. Our invertor is39

non-deterministic and can generate multiple motions corresponding to a given motion embedding.40



Figure 1: A overview of our human text-to-motion model

The presence of the encoder and its approximate inverse (decoder) allows for the ability to go beyond41

text-to-motion translation.42

In this work, we combine these two approaches to solve the problem of text conditional motion43

generation. We first train a diffusion decoder to invert the CLIP encoder. Our inverter is non-44

deterministic and can generate multiple motions corresponding to a given motion embedding. The45

presence of the encoder and its approximate inverse (decoder) allows for the ability to go beyond46

text-to-motion translation.47

To obtain a complete model for image generation, we combine a CLIP motion embedding decoder48

with a prior model that generates possible CLIP motion embedding from a given text caption. We49

also develop methods for training diffusion priors in the latent space and show that they achieve50

comparable performance to auto regressive priors, while being more computationally efficient.51

2 Related Work52

2.1 Human Motion Generation53

Neural motion generation learned from motion-capture data can be conditioned by any signal54

describing motion. Any signal that describes motion. So many methods use parts of the movement55

itself for specific guidance. Some of the related previous work predict human motion from its prefix56

poses[1, 2, 3, 4]. Others[5, 6, 7, 8] make use of bi-directional GRU[9] and Transformer[10] to solve57

super-resolution and in-betweening tasks. Other work[11] uses the automatic encoder to learn the58

latent representation of motion, and then use it to edit and control the motion with spatial constraints,59

such as root locus and bone length.60

Recently, another generative model that has recently attracted a lot of attention is NeRF([33, 34],61

which has had considerable success in rendering realistic images. An implicit neural representation62

(INR) is a series of neural networks that optimise their parameters to fit a sample rather than an entire63

distribution. A major advantage is the technique’s ability to generalise extremely well in the spatial64

or temporal dimension. For example, Cervantes[35] proposed an implicit scheme which models both65

action categories and timestamps. Similar to the original NeRF, the timestamps are represented by66

sine values. After supervised training, the proposed method can generate a variable-length motion67

sequence for each action category.68

Apart from input text, human motion can also be controlled with a high-level guidance from natural69

language[12, 13], action class[14, 15, 16], audio[17]. For instance, recent works[18] generated dance70
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moves conditioned on music and the motion prefix, Edwards[19] generate facial expressions to fit71

spoken audio sequences. In most cases, the authors recommend a specialized approach to map each72

regulatory domain to human motion.73

2.2 Text to Motion74

In recent years, the dominant approach for text-to-motion tasks is to learn a shared latent space of75

language and motion. A motion-language dataset named KIT[20] offers about 11 hours of motion-76

capture sequences, each paired with a sentence that clearly describes the action being made. KIT77

sentences describe movement type, direction, and sometimes speed, but lack details about movement78

style and do not include abstract descriptions of movement. So Currently most of the researches are79

based on KIT. Yamada[21] learns both mappings by simultaneously training the text and motion80

auto-encoders to bind their latent spaces using both text and motion pairs. JL2P[22] learns the KIT81

motion-language dataset with an auto-encoder, constrained to a one-to-one mapping from text to82

motion, which has been improved in terms of the subtle concepts of text (i.e. speed, trajectory and83

type of action). They also learned to joint motion-text latent space and apply training curriculum to84

ease optimization. Lin[22] has further improved trajectory prediction by adding dedicated layers.85

Another dataset BABEL[23] provides per-frame text labels sorted by 260 classes for the larger86

AMASS dataset [24], including approximately 40 hours of motion capture. Although a clear87

description of the action is provided, any detail beyond the type of action is usually missing, but this88

data covers a wider variety of human motions. MotionCLIP[25] extends text-to-motion data limits89

and enables latent space editing using shared text image latent spaces learned by CLIP[26].90

2.3 Diffusion Generation Model91

Diffusion models[27] are a class of neural generative models based on the stochastic diffusion process92

modelled in thermodynamics. In this setup, samples from the data distribution are gradually noised93

by the diffusion process. The neural model then learns the reverse process of gradually denoising the94

samples. For conditioned generation, Dhariwal & Nichol[29] to enable conditioning on CLIP textual95

representations. More recently, Zhang[30] and Kim[31] have suggested diffusion models for motion96

generation. For the MotionDiffuse model proposaled by Zhang et al., unlike autoregressive inference97

schemes that typically require many long motion sequences for training, MotionDiffuse is able to98

model correlations between successive movements without introducing additional training costs.99

MDM[32] is a diffusion-based generative model carefully tuned for the human motion domain. Being100

diffusion-based, the MDM benefits from the local many-to-many domain representation described101

above, as evidenced by the quality and diversity of the resulting movements. Furthermore, MDM102

incorporates insights already established in the field of motion generation, helping it to become lighter103

and more controllable.104

3 Criticism105

During recent period of time, the MotionCLIP[25] method generated in 2022, it proposes a motion106

generation network that makes use of the knowledge encapsulated in CLIP to allow intuitive operations107

such as text conditional motion generation and editing. But it still have limitations in understanding108

directions like left, right and counter-clockwise. It also has difficulty in capture some styles(e.g.109

heavy and proud), and is of course not consistent of some cultural reference examples. For examples,110

this model fails to produce Cristiano Ronaldo’s goal celebration and batman’s signature pose.111

MDM[32], a method suitable for a variety of human motion generation tasks. MDM is an atypical112

classifier-free diffusion model with a transformer encoder backbone and predicts the signal, rather113

than the noise. A significant limitation of the diffusion approach is the long inference time, with a114

single result requiring about 1000 forward passes. Since our motion model is small in any case, using115

a dimension an order of magnitude smaller than the image reduces its inference time from less than a116

second to about a minute.117

Another obvious shortcoming is that although MDM used CLIP in the generation phase, it only118

masked CLIP randomly for classififier-free learning and did not joint embedding space of CLIP with119

text, in fact MDM did not link semantics and motion together well, their semantic generation was120

poor.121
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Figure 2: A complex example of motion generation of same input text

MotionDiffuse[30], the first text-driven motion generation method based on a diffusion model.122

MotionDiffuse demonstrates three main advantages: probabilistic mapping to enhance diversity,123

realistic synthesis to ensure rationalisation of motion sequences, and multi-level manipulation to124

allow manipulation of each part and long sequence generation. Although MotionDiffuse pushes the125

performance boundaries of motion generation tasks forward, a number of issues remain. Firstly,126

diffusion models require a large number of diffusion steps during inference and generating motion127

sequences in real time is challenging. Secondly, the current pipeline only accepts a single form of128

motion representation. A more general pipeline that also adapts to all datasets would be more suitable129

for a variety of scenarios.130

4 Numerical results131

Our model successfully generate many diverse and interesting human motions given same input text,132

I will show some image of this motion in this report(2, 3, 4) and specific demonstration video in our133

code zip.134

We use the HumanML3D[36] dataset for text-tomotion generation, examine MotionCLIP’s ability to135

convert text into animation. Since the latent space of motion is aligned with CLIP, we use CLIP’s136

pre-trained text encoder to process the input text and use MotionCLIP’s decoder to convert the137

resulting latent embedding into motion. We then put the trained latent space into the DDPM model138

to train the motion decoder, which is better than the original MDM model because we learn the139

semantics and style of the given text better by using CLIP.140

5 Conclusion141

In this paper, we proposed a novel approach for human motion generation from text. Our model takes142

as input a text description of a motion, and outputs a sequence of motion frames that represent the143

motion described in the text. To obtain a complete motion generation model, we combine the CLIP144

motion embedding decoder with an a prior model that generates possible CLIP motion embedding145

from a given text heading, and then this embedding is used to condition a diffusion decoder which146

produces a final motion. Nevertheless, we see that the same autoencoder with the same data can147

understand motion manifolds and their semantics significantly better, simply by aligning them with148

well-behaved, knowledge-rich latent spaces.149
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Figure 3: A simple example of motion generation of same input text
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